Noyaux, masse et énergie

www.pc1.ma

I) Equivalence masse énergie :

1) Relation d'Einstein:

En 1905, en élaborant la théorie de la relativité restreinte, Einstein postule que la masse est une des formes de l'énergie :

Un système au repos, de masse m possède une énergie de masse :

E : énergie de masse en joules (J)

 $E = m.c^2$ avec m: masse en kilogrammes (kg)

c : vitesse de la lumière dans le vide ($c = 3,0.10^8 \, \text{m.s}^{-1}$)

<u>Conséquence</u>: Si le système (au repos) échange de l'énergie avec le milieu extérieur,(par rayonnement ou par transfert thermique par exemple), sa variation d'énergie ΔE et sa variation de masse Δm sont liées par la relation : $\Delta E = \Delta m.c^2$

* Si $\Delta m < 0$ alors $\Delta E < 0$, le système cède de l'énergie au milieu extérieur et sa masse diminue.

* Si $\Delta m > 0$ alors $\Delta E > 0$, le système reçoit de l'énergie du milieu extérieur et sa masse augmente.

2) Unités:

A l'échelle atomique, l'unité joule est inadaptée, trop grande ; on utilise plutôt l'électron volt, eV : $1 eV = 1,60.10^{-19} \, J$ et aussi le MeV: $1 \, MeV = 10^6 \, eV = 1,60.10^{-13} \, J$.

Exemple : Déterminer l'énergie de masse E d'un proton en J et en MeV : $(m_p = 1,67.10^{-27} \text{ kg})$ $E = m_p$. $c^2 = 1,67.10^{-27} \text{ x } (3,0.10^8)^2 \approx 1,50.10^{-10} \text{ J} = 939 \text{ MeV}$

Remarque : A cette échelle, l'unité kg est aussi inadaptée, on utilise parfois l'unité de masse atomique notée u .Elle est égale au douzième de la masse d'un atome de carbone ¹²₆C.

$$1 u = \frac{M(_{6}^{12}C)}{12N_A} = \frac{12,0.10^{-3}}{12 \times 6,02.10^{23}} = 1,67.10^{-27} kg$$

II) Energie de liaison du noyau :

1) Défaut de masse du noyau :

On a constaté en mesurant les masses que la masse du noyau atomique est inférieure à la somme des masses des protons m_p et des neutrons m_n qui le constituent : $m_{noyau} < Z.m_p + (A-Z).m_n$

Cette différence est appelée défaut de masse Δm : $\Delta m = Z.m_p + (A - Z).m_n - m_{noyau}$ ($\Delta m > 0$)

Exemple : Calculer Δm pour un noyau d'hélium :

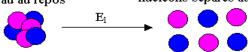
 $\begin{array}{l} \underline{Donn\acute{e}s:} \; m_n = 1,67496.10^{-27} \; kg, \; m_p = 1,67265.10^{-27} \; kg \; \; et \; m(^4_2He) = 6,6447.10^{-27} \; kg \\ \Delta m = 2.m_p + 2.m_n - m(^4_2He) = (2 \; x \; 1,67265 + 2 \; x \; 1,67496 - 6,6447).10^{-27} = 5,05.10^{-29} \; kg \end{array}$

2) Energie de liaison du noyau :

<u>Définition</u>: On appelle énergie de liaison d'un noyau, notée E_l , l'énergie que le milieu extérieur doit fournir à un noyau au repos pour le dissocier en nucléons séparés au repos. Lorsque le noyau se dissocie, la masse augmente de Δm et l'énergie de $\Delta m.c^2$.

noyau au repos

nucléons séparés au repos



L'énergie de liaison d'un noyau a pour expression :

E₁: énergie de liaison du noyau (en J) à convertir en MeV

 $E_1 = \Delta m.c^2$ avec Δm : défaut de masse du noyau (en kg)

c : célérité de la lumière dans le vide (en m.s⁻¹)

Pour un noyau d'hélium : $E_1 = \Delta m.c^2 = 5,05.10^{-29} \text{ x } (3,0.10^8)^2 = 4,54.10^{-12} \text{ J} = 28,4 \text{ MeV}$

Remarque : Inversement, lorsque le noyau se forme à partir de ses nucléons libres, le milieu extérieur reçoit l'énergie $E = |\Delta m| \cdot c^2$ (la masse du système diminue et $\Delta m < 0$).

3) Energie de liaison par nucléon :

<u>Définition</u>: L'énergie de liaison par nucléon d'un noyau notée E_A est le quotient de son énergie de liaison par le nombre de ses nucléons.

E_A: énergie de liaison par nucléon (en Mev/nucléon) **www.pc1.ma**

$$E_A = \frac{E_l}{A}$$
 avec E_l : ér

E₁: énergie de liaison du noyau (en Mev)

A: nombre de nucléons du noyau

Pour un noyau d'hélium :
$$E_A = \frac{E_l}{4} = \frac{28,4}{4} = 7,10 \text{ MeV} / \text{nucléon}$$

Remarque : E_A permet de comparer la stabilité des noyaux entre eux.

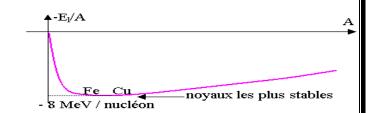
Plus l'énergie de liaison par nucléon est grande, plus le noyau est stable.

4) Courbe d'Aston:

La courbe d'Aston représente - $\frac{E_l}{A}$ en fonction de A (nombre de nucléons).

Elle permet de visualiser facilement les noyaux les plus stables, ceux-ci se trouvent au bas du graphe comme le noyau de fer.

(A entre 20 et 195)



III) Bilan énergétique :

1) Cas général :

Equation d'une réaction nucléaire : $\begin{array}{ccc} A_1 & A_2 & A_2 & A_3 & A_4 & A_4$

D'après l'équivalence masse-énergie, la variation d'énergie ΔE de la réaction correspond à la variation de masse Δm :

$$\Delta m = (m_3 + m_4) - (m_1 + m_2).$$
 $\Delta E = \Delta m.c^2$

$$\Delta E = E_{l1} + E_{l2} - (E_{l3} + E_{l4}) \ \ (voir \ définition \ de \ E_l)$$

2) Réactions nucléaires spontanées :

Radioactivité \alpha: $\stackrel{A}{Z} X \rightarrow \stackrel{A-4}{Z-2} Y + \stackrel{4}{2} He$

Energie fournie au milieu extérieur : $\Delta E = [m({^{A-4}_{Z-2}Y}) + m({^{4}_{2}He}) - m({^{A}_{Z}X})].c^2$

Exemple: désintégration α d'un noyau de radium 226 en noyau de radon 222.

$$\overline{\text{m(}^{226}_{88}\text{Ra)}} = 225,9770 \text{ u, m(}^{222}_{86}\text{Rn)} = 221,9702 \text{ u, m(}^{4}_{2}\text{He)} = 4,0015 \text{ u, (1 u = 931,5 MeV.c}^{-2})$$

$$^{226}_{88}$$
 Ra $\rightarrow ^{222}_{86}$ Rn + $^{4}_{2}$ He $\Delta E = [m(^{222}_{86}$ Rn) + $m(^{4}_{2}$ He) - $m(^{226}_{88}$ Ra)]. c^{2}

$$\Delta E = (221,9702 + 4,0015 - 225,9770) \times 931,5 = -4,937 \text{ MeV}$$

Exemple : désintégration β du cobalt 60 en nickel 60.

$$\Delta E = (59,9154 + 5,49.10^{-4} - 59,9190) \times 931,5 = -2,842 \text{ MeV}$$