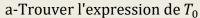
Série 2 : Dipôle RLC

t(ms)

Figure-1

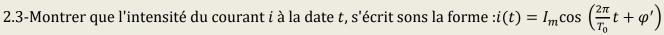
 $u_c(V)$

EXERCICE 1:


On se propose dans cet exercice d'étudier l'évolution de l'énergie électrique dans un circuit siège d'oscillations électriques libres. On réalise pour effecteur cette étude le montage de la figure (1). Ce circuit contient les éléments suivants :

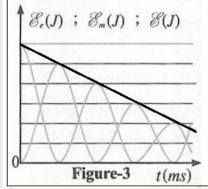
- Un générateur idéal, de tension constante E
- Un condensateur de capacité $C = 22\mu F$
- Un conducteur ohmique de résistance *R*; Un interrupteur *K*
- 1 Charge du condensateur :

On bascule l'interrupteur à la position (1)


- 1.1-Calculer la charge $Q_{\rm max}$ du condensateur.
- 1.2- Calculer l'énergie électrique maximale $E_{\rm emax}$ qu'il emmagasine.
- 2 Décharge du condensateur à travers une bobine (L, r = 0): On bascule l'interrupteur à la position (2) et on suit l'évolution de la tension u_c au cours du temps à l'aide d'un oscilloscope figure (2)
 - 2.1-Etablir l'équation différentielle vérifiée par la charge q.
 - 1.2- La solution de cette équation différentielle est :q(t) =

$$Q_{\max}\cos\left(\frac{2\pi}{T_0}\cdot t + \varphi\right)$$

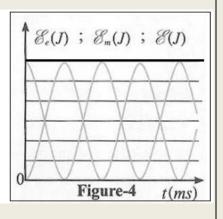
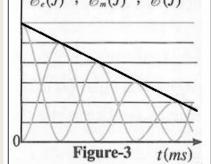
b-Comment s'appelle T_0 ? cette nomination est-elle convenable à votre avis...?

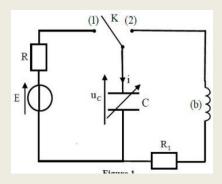

c-Déterminer la valeur de L

a-Exprimer I_m en fonction de C, E et L. Calculer I_m

b-Calculer φ'

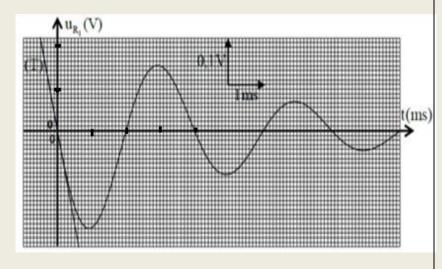
- 2.4- Les figures (3) et (4) proposent deux diagrammes d'énergies des oscillations électriques libres.
 - a- Laquelle de ces deux figures correspond au circuit étudié dans cet exercice ? (Justifier)
 - b- Qu'est-ce qu'on doit ajouter à ce circuit pour que son diagramme d'énergie corresponde à la figure que vous n'avez pas choisie?


figure-2

EXERCICE 2 : Décharge d'un condensateur dans une bobine

On réalise le montage représenté sur la figure 1 comportant :


- un générateur idéal de tension de f.e.m. E;
- un condensateur de capacité C=4uF initialement chargé;
- un conducteur ohmique de résistance R;
- un conducteur ohmique de résistance R_1 ;

— une bobine d'inductance L = 0.1H et de résistance négligeable ;

— un interrupteur K.

Après avoir chargé complètement le condensateur de capacité C_1 , on bascule à un instant t (qu'on prendra comme nouvelle origine des dates t=0) l'interrupteur K en position (2). La courbe de la figure 2 représente l'évolution, au cours du temps, de la tension $u_{R_1}(t)$ aux bornes du conducteur ohmique de résistance R_1 . (T)représente la tangente à la courbe à l'instant t=0.

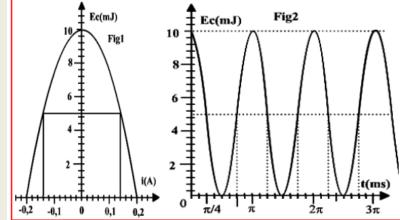
1. Montrer L'équation différentielle vérifiée par $u_{R_1}(t)$

2. Trouver la valeur de R_1 .

3. Déterminer l'Energie dissipé dans R₁ entre les instants t=0 et t=3ms

Exercice n°2:

On réalise un circuit série à l'aide d'un condensateur de capacité C initialement chargé et d'une bobine d'inductance L et de résistance pratiquement nulle. À un instant donné t, la tension aux bornes du condensateur a pour expression : $u_C(t) = U_{Cm} \cdot \sin(\omega_0 t)$


1.

a. À quelles grandeurs électriques la pulsation ω_0 est-elle liée ?

b. Montrer que l'intensité i du courant dans le circuit oscillant LC peut s'écrire $:i(t)=U_{Cm}\cdot\sqrt{\frac{c}{L}}$

 $\cos(\omega_0 t)$

c. Sachant que l'énergie électrique initialement emmagasinée dans le condensateur se conserve, au cours du temps, dans le circuit, établir l'équation différentielle qui régit l'intensité i du courant électrique circulant dans le circuit.

d. Montrer que l'énergie électrostatique E_e emmagasinée par le condensateur est $:E_e = \frac{1}{2}(CU_{Cm}^2 - Li^2)$

2. On donne les variations de l'énergie électrostatique E_C emmagasinée dans le condensateur en fonction de l'intensité i et en fonction du temps t (fig. 2).

a. Déduire des deux graphes :

• La valeur maximale E_{em} ;

• La valeur maximale I_m de i;

La valeur de la période propre T_0 de l'oscillateur.

b. Déduire la valeur de ω_0 , L, C et U_{Cm}

Déterminer graphiquement les valeurs de i et t pour lesquelles E_L est égale à E_e .