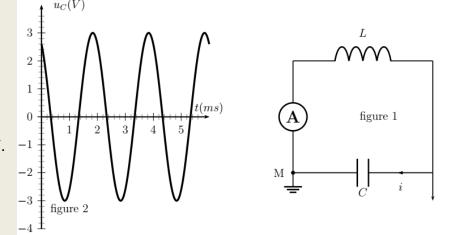
Série 1 : Dipôle RLC

PHYSIQUE POUR TOUS

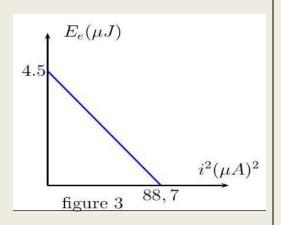
EXERCICE 1:

Un condensateur de capacité $C=0.25\mu F$ est chargé à l'aide d'un générateur de tension de f.é.m. $E=6.0\ V$, puis déconnecté du générateur.

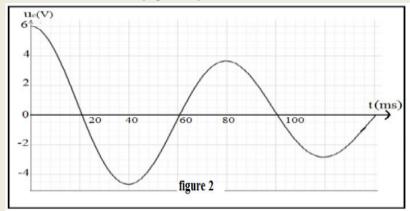
À la date t=0, le condensateur chargé est relié à une bobine d'inductance L et de résistance ${\bf r}$.

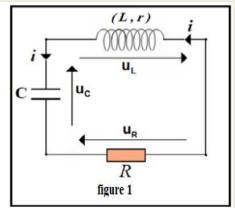

L'évolution au cours du temps de la tension u_C aux bornes du condensateur est enregistrée à l'aide d'un ordinateur (le condensateur est étudié en convention récepteur). On donne : $S_h = 2/\text{div}$; $S_x = 1$ ms/div

- 1)- Comment appelle-t-on le type d'oscillations observées?
- 2)- Comment interpréter la décroissance des oscillations?
- 3)- Établir l'équation différentielle à laquelle satisfait u_c .
- 4)- Mesurer la pseudo-période T'des oscillations.
- 5)- Déterminer l'énergie dissipée par effet de joule entre t=0 et t=7. T
- 6)- On considère que la résistance r de la bobine est nulle.
 - a)- Écrire la nouvelle équation différentielle satisfaite par u_C .
 - b)- La solution de l'équation s'écrit : $u_C(t) = U \cdot \cos{(\alpha t + \varphi)}$. Déterminer les expressions des constantes U, α et φ .
 - c)- En déduire l'expression de la charge q(t) du condensateur et de l'intensité i(t) à l'instant t.
 - d)- Quelle est l'expression littérale de la période des oscillations qui prennent naissance dans le circuit ?
- 7)- Calculer la valeur de l'inductance L de la bobine en admettant que la pseudo-période est identique à la i période.

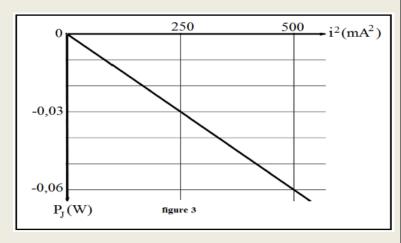

EXERCICE 2:

Un condensateur de capacité C initialement chargé, est branché avec une bobine d'inductance L et de résistance négligeable et un ampèremètre (A) . À l'aide d'un oscilloscope, on visualise la tension $u_c(t)$ aux bornes du condensateur et l'ampèremètre indique une intensité I.


- 1. Établir l'équation différentielle vérifiée par u_c .
- 2. En déduire l'expression de la tension $u_c(t)$ en fonction des paramètres du circuit.
- 3. Quelle est la grandeur qu'est indiquée par l'ampèremètre ? Donner son expression en fonction de Q_m et ω_0 , avec $\omega_0=\frac{2\pi}{T_0}$
- 4. Une étude expérimentale nous permet de tracer la courbe qui représente la variation de l'énergie électrique E_e de l'oscillateur électrique en fonction de i^2


- a. Montrer que l'énergie globale E se conserve au cours du temps ;
- b. Déterminer l'expression de l'énergie globale *E* en fonction de C et *Om*:
- c. Donner une explication théorique de la forme de la courbe de la figure 3 et déterminer les valeurs de L, C et \mathcal{Q}_m
- d. Exprimer l'énergie électrique E_e en fonction de $u_c(t)$ et calculer sa valeur à l'instant $t = \frac{T_0}{2}$.
- e. Représenter l'allure de la courbe qui représente la variation de E_m énergie magnétique en fonction de i^2 sur le même graphe de la figure 3.
- f. En déduire les valeurs de i lorsque $E_m=E_e$

EXERCICE 3:


On charge un condensateur de capacité $\mathbf{C} = 220\mu\mathbf{F}$ par un générateur de force électromotrice $\mathbf{E} = 6\mathbf{V}$, et on le relie à $\mathbf{t} = \mathbf{0}$ aux bornes d'une bobine d'inductance \mathbf{L} et de résistance interne \mathbf{r} , et à un conducteur ohmique de résistance $\mathbf{R} = \mathbf{100\Omega}$ (figure 1). On trace les variations de la tension $\mathbf{Uc}(\mathbf{t})$ aux bornes du condensateur (figure 2).

Etude du circuit RLC série :

- 1.1. Indique, sur le circuit, comment relier l'oscilloscope pour visualiser la tension Uc(t).
- 1.2. Nommer le régime des oscillations, et expliquer l'amortissement des oscillations.
- 1.3. Calculer la valeur de l'inductance \boldsymbol{L} sachant que $\boldsymbol{T}=\boldsymbol{T}_0$.
- 1.4. Etablir l'équation différentielle vérifiée par la tension $\mathbf{Uc}(\mathbf{t})$.
- 1.5. Calculer la variation de l'énergie totale $\Delta \xi_t$ dans le circuit entre les deux instants $\mathbf{t} = \mathbf{0}$ et

t = 80ms.

- 1.6. Qu'est-ce que représente cette variation d'énergie totale calculée ?
- 1.7. On exprime la puissance instantanée dissipée par effet Joule dans le circuit par la relation : $P_J = \frac{d\xi_t}{dt}$ avec ξ_t est l'énergie totale du circuit :
 - 1.7.1. Montrer que $P_I = -(R + r) \cdot i^2$.
 - 1.7.2. On trace à l'aide d'un ordinateur les variations de P_J en fonction de i_2 dans la figure 3. Monter que la valeur de la résistance interne de la bobine est $r=20\Omega$.