Série 4 : Dipôle RL

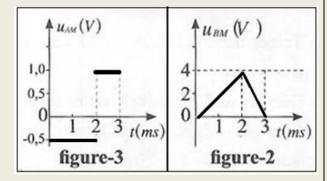
voie

figure-1

EXERCICE 1:

On fait passer dans une bobine de résistance négligeable, un courant électrique variable délivré par un générateur à basse fréquence (GBF) fonctionnant en mode triangulaire. Le circuit réalisé comprend un conducteur ohmique de résistance $R=100\Omega$ fig-(1)

 $\begin{array}{c|c} i & u_{AM} \\ \hline i & u_{BM} \\$

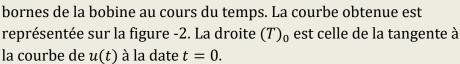

A l'aide d'un oscilloscope bicourbe on visualise la tension aux bornes de la bobine sur la voie y_1 et la tension aux bornes du conducteur ohmique sur la voie Y_2 . Les

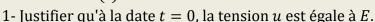
résultats obtenus sont présentés sur les figures 2 et 3.

- 1- Préciser à l'aide du schéma du circuit, comment est branché l'oscilloscope.
- 2- Montrer que la tension u_{AM} peut s'écrire :

$$u_{AM} = -\frac{L}{R} \cdot \frac{dU_{BM}}{dt}$$

3-Vérifier que le coefficient d'inductance est L = 25. mH.



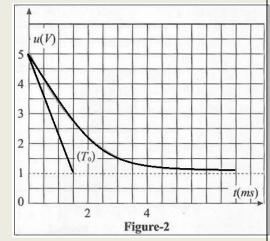

EXERCICE 2:

Le montage de la figure (1) comprend :

- Une bobine de résistance r et d'inductance L.
- Un résistor de résistance *R* réglable.
- Un générateur dont la tension est constante E = 5 V.
- Un interrupteur *K*.

On ferme le circuit à la date t = 0 et on visualise l'évolution de la tension u aux

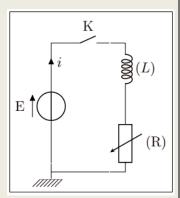
2-Montrer que u vérifie l'équation différentielle suivante :


$$u(t) + \frac{R}{R+r} \frac{du(t)}{dt} = \frac{r}{R+r} E$$

3- Sachant que la solution de cette équation est de la forme :

$$u = Ae^{-\frac{t}{t}} + B \operatorname{avec} \tau = \frac{L}{R+r}.$$

Montrer que :
$$u = \frac{E}{R+r} \left[Re^{-\frac{1}{\tau}} + r \right]$$


4- Déterminer r et L

EXERCICE 3:

On réalise le montage représenté dans la figure 1 et qui constitué de :

- Un générateur de force électromotrice E = 6 V et de résistance négligeable ;
- Une bobine de coefficient d'inductance L = 1,5mH et de résistance négligeable
- Un conducteur ohmique de résistance R réglable ;

• Un interrupteur K.

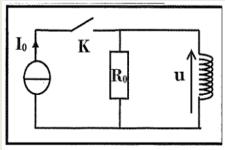
On règle la résistance R sur une valeur R_1 et on ferme l'interrupteur K à un instant t=0 que l'on considère comme origine du temps.

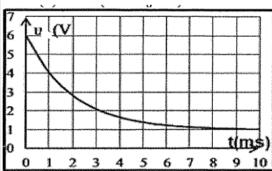
- 1 Établir l'équation différentielle vérifiée par l'intensité du courant i(t). Figure : (1)
- 2 La solution de l'équation différentielle s'écrit sous la forme : $i(t) = \frac{E}{R_1 \cdot (1 e^{-t/\tau_1})}$. Déterminer à partir de cette solution l'expression de la constant τ_1 en fonction des paramètres du circuit.
- 3 On règle la résistance R sur la valeur $R_2=2$. R_1 . Trouver l'expression de la nouvelle constante de temps τ_2 en fonction de τ_1 . En déduire l'effet de la valeur de R sur l'établissement du courant dans le dipôle RL.

EXERCICE 4:

II - Étude d'un dipôle RL alimenté par un générateur du courant On réalise le montage suivant qui comporte :

- Un générateur idéal du courant d'intensité $I_0 = 60$ mA,
- Un conducteur ohmique de résistance R_0 ,
- Une bobine d'inductance L et de résistance r.


À l'instant t = 0, on ferme le circuit.


- 1. Établir l'équation différentielle vérifiée par la tension u(t)
- 2. La solution de cette équation différentielle est :

$$u(t) = A\left(r + Re^{-\frac{t}{\tau}}\right)$$

Trouver l'expression de A en fonction de R_0 , r, et I_0 , ainsi que l'expression de τ en fonction de L, R_0 , et r.

- 3. Exploiter la courbe u = f(t) pour :
 - Calculer la valeur de R_0 et la valeur de r,
 - Déterminer l'inductance de la bobine *L*.

