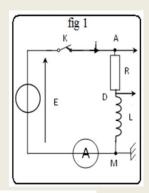
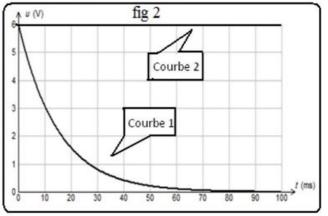
Série 1 : Dipôle RC

EXERCICE 1:

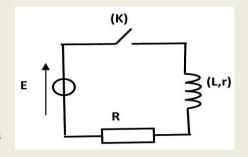

On réalise le circuit suivant avec un générateur de courant continu de f.é.m. E=6V, un conducteur ohmique de résistance $R=50\Omega$, et une bobine d'inductance L et de résistance r. On enregistre les 2 courbes suivantes à l'oscilloscope. On note u_R et u_B les tensions aux bomes de la résistance R et de la bobine

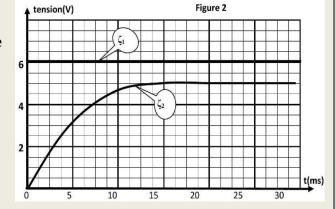



- 1. Quelles tensions visualise-t-on sur chacune des voies 1 et 2?
- 2. Quel phénomène met-on en évidence ? Quel est le dipôle responsable de ce phénomène ?
- 3. Quelle relation existe à chaque instant entre les tensions u_R , E, et u_B ?
- 4. En déduire l'équation différentielle de l'établissement du courant dans le circuit.
- 5. Définir le régime permanent. Écrire l'équation différentielle en régime permanent.
- 6. À l'aide des courbes de la figure 2, donner les valeurs des tensions u_R et u_B en régime permanent.
- 7. En déduire la valeur de l'intensité I_p du courant en régime permanent, puis la valeur de la résistance r de la bobine.
- 8. La solution de l'équation différentielle établie au 4. Est : $i=I_P \big(1-e^{-t/\tau}\big)$.
 - 8.1. Vérifier que la constante de temps du circuit est : $\tau = \frac{L}{(R+r)}$.
 - 8.2. Calculer τ à l'aide de la figure 2. En déduire la valeur de l'inductance L de la bobine.

EXERCICE 2:

On réalise un circuit électrique AM comportant en série un conducteur ohmique de résistance ${\rm R}=50\Omega$, une bobine $({\rm B_1})$ d'inductance L et de résistance supposée nulle et un interrupteur K . Le circuit AM est alimenté par un générateur de tension de force électromotrice (f.e.m) E (fig 1). Un système d'acquisition adéquat permet de suivre l'évolution au cours du temps des tensions ${\rm u_{AM}}$ et ${\rm u_{DM}}$. A l'instant ${\rm t}=0$ s, on ferme l'interrupteur K. Les courbes traduisant les variations de ${\rm u_{AM}}(t)$ et $u_{\rm DM}(t)$ sont celles de la figure 2.




- 1. a- Montrer que la courbe 1 correspond à $u_{DM}(t)$.
 - b- Donner la valeur de la fem du générateur.
- 2. a- A l'instant $t_1 = 10$ ms, déterminer graphiquement la valeur de la tension u_{B1} aux bornes de la bobine (B_1) et déduire la valeur de la tension u_R aux bornes du conducteur ohmique.
 - b- A l'instant $t_2=100$ ms, montrer que l'intensité du courant électrique qui s'établit dans le circuit est $I_0=0.12$ A.
- 3. a- Déterminer graphiquement la valeur de la constante de temps au du dipôle RL.
 - b- Sachant que $\tau = L/R$, déterminer la valeur de l'inductance L de la bobine (B_1) .
 - c- Calculer l'énergie emmagasinée dans la bobine en régime permanent.
- 4. On remplace la bobine (B_1) par une bobine (B_2) de même inductance L mais de résistance r non nulle. Les courbes traduisant les variations de $u_{AM}(t)$ et $u_{DM}(t)$ sont celles de la figure 3
 - a-Montrer qu'en régime permanent, la tension aux bornes de la bobine (B_2) est donnée par la relation $u_{B2}=\frac{rE}{R+r}$
 - b- Déduire la valeur de la résistance r.

EXERCICE 3:

Le circuit électrique de la figure 1 comporte en série une bobine d'inductance L = 0,6H et de résistance r , un conducteur ohmique de résistance R et un générateur de tension continue de fém. E. L'origine des temps est prise à l'instant où l'on ferme l'interrupteur (K). A l'aide d'un oscilloscope à mémoire, on visualise les tensions aux bornes du générateur et $u_R(t)$ aux bornes du conducteur ohmique, on obtient les courbes ζ_1 et ζ_2 de la figure 2.

- a- Indiquer sur la figure 1 les branchements à réaliser de l'oscilloscope nécessaires pour visualiser sur la voie 1 la tension du conducteur ohmique et sur la voie 2 la tension aux bornes du générateur.
 - b- Attribuer à la tension $u_R(t)$ la courbe correspondante. Justifier.
 - c- Expliquer le retard à l'établissement du courant au niveau de la bobine et nommer le phénomène physique mis en jeu.

- 2. Déterminer à partir des courbes :
 - a- la fém. E du générateur.
 - b- la constante de temps τ du circuit électrique.
 - c- les valeurs des tensions u_R aux bornes du conducteur ohmique et u_B aux bornes de la bobine en régime permanent.
- 3. En régime permanent :
 - a- Montrer que $u_R = \frac{RE\tau}{L}$.
 - b- En déduire les valeurs de R et r.
- 3. En régime transitoire :
 - a- Montrer que l'équation différentielle régissant l'évolution de l'intensité du courant i(t) dans le circuit s'écrit : $\frac{di(t)}{dt} + \frac{1}{\tau}i(t) = \frac{E}{L}$.
 - b- Vérifier que $i(t) = I_0(1 e^{-t}\tau)$ est solution de cette équation différentielle.
 - c- Préciser la signification physique de ${\rm I}_0$ et calculer sa valeur.