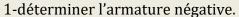

Série 1 : Dipôle RC

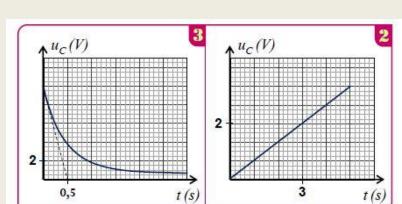
EXERCICE 1:


On réalise le montage de la figure1 formé de :

*un générateur idéal du courant qui alimente le circuit par un courant d'intensité $I_0 = 1mA$.

- *un conducteur ohmique de résistance R.
- *un interrupteur K a deux positions 1 et 2.

I- A t=0 on bascule l'interrupteur à la position 1 et on suit les variations de la tension $u_{\mathcal{C}}$ en fonction du temps et on obtient la courbe de la figure 2.



2-montrer que l'expression de la tension aux bornes du condensateur s'écrit : $u_C = \frac{I_0}{C}$. t.

3-vérifie que $C=1,5.10^{-3} F$

4-calculer l'énergie électrique E_e stockée dans le condensateur à t=3s.

II-lorsque la tension aux bornes du condensateur est égale à 10V on bascule l'interrupteur à la position2 et on obtient la courbe de la figure 3.

1-déterminer l'équation différentielle vérifié par $u_{\mathcal{C}}$.

2-la solution de l'équation différentielle s'écrit : $u_C = A$. $e^{-\alpha t}$. déterminer les expressions de A et α en fonctions des paramètres du circuit.

3-déterminer la valeur de τ et déduire la valeur de la résistance R

4-montrer que l'expression de l'intensité du courant est : i = -0.03. e^{-2t}

5-expliquer comment on peut choisir la valeur de R pour avoir une décharge rapide.

EXERCICE 2:

Le condensateur est un dipôle capable de stocker l'énergie électrique, on le trouve dans l'appareil photos.

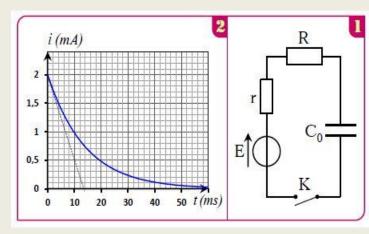
Cet exercice consiste à étudier le dipôle RC au cours de la charge d'un condensateur.

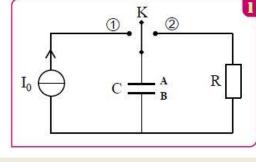
On réalise le montage de la figure1 formé de :

- *générateur de tension de force électromotrice E=9V.
- *deux conducteurs ohmiques de résistance $r=20\Omega$ et R.

*condensateur de capacité C_0 .

*interrupteur K.


A t=0 on ferme le circuit électrique et un courant d'intensité *i* variable en fonction du temps circule (figure2).


1-représenter sur la figure1 dans la convention réceptrice :

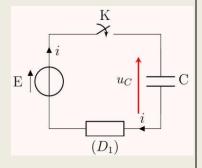
- -la tension $\boldsymbol{u_R}$ aux bornes de la résistance R.
- -la tension u_c aux bornes du condensateur.

2-montrer sur la figure1 comment relier

l'oscilloscope pour visualiser u_R .

3-déterminer l'équation différentielle vérifiée par la charge du condensateur q (t).

4-la solution de l'équation différentielle est de forme $q = A(1 - e^{-mt})$. déterminer m et A.


5-montrer que l'expression de l'intensité du courant est $i = \frac{E}{R+r}$. $e^{-t/\tau}$. Avec τ la constante du temps

qu'on doit déterminer en fonction de R , r et $\boldsymbol{\mathcal{C}_0}$

6- à l'aide du graphe i = f(t) déterminer R et C_0 .

EXERCICE 3: Réponse du dipôle RC à un échelon de tension ascendant

On réalise le montage électrique représenté dans la figure 1 qui est constitué d'un générateur idéal de tension continue de force électromotrice $E=12\ V$, d'un condensateur de capacité C non chargé, d'un conducteur ohmique (D_1) de résistance respective R_1 et d'un interrupteur K. (figure 1) A la date t=0, on ferme l'interrupteur K, un courant électrique passe alors dans le circuit, son intensité i varie au cours du temps comme le montre la figure 2.

i(mA)

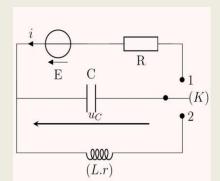
0,5

0

1. Montrer que l'équation différentielle que vérifie l'intensité du courant i s'écrit sous la forme :

$$\frac{di}{dt} + \frac{1}{R_1 \cdot C} \cdot i = 0$$

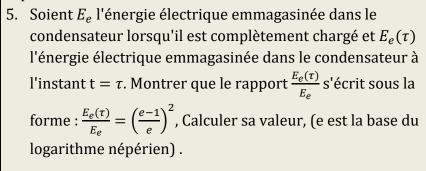
2. La solution de cette équation différentielle s'écrit sous la forme $i(t) = A \cdot e^{-t/\tau}$.

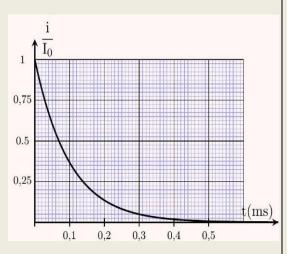

Déterminer l'expression de chacune des deux constantes A et τ en fonction des paramètres du circuit.

Déterminer la valeur de la résistance R_1 . Vérifier que $C = 6.3 \mu F$.

EXERCICE 4 : Etude de la charge du condensateur

Initialement le condensateur est non chargé.


A un instant considéré comme origine du temps t=0, on bascule l'interrupteur K à la position 1, le condensateur se charge alors à travers un conducteur ohmique de résistance $R=100\Omega$ à l'aide d'un générateur électrique parfait de force électromotrice E=6 V.



- 1. Etablir l'équation différentielle que vérifie l'intensité du courant i en respectant l'orientation indiquée dans la figure 1.
- 2. La solution de l'équation différentielle s'écrit sous la forme suivante : $i(t) = A. e^{-t/\tau}$ Trouver l'expression de A et celle de τ en fonction des paramètres du circuit.
- 3. En déduire l'expression de la tension u_c en fonction du temps t.
- 4. Un système informatique permet de tracer la courbe qui représente les variations $\frac{i}{I_0}$ en fonction du temps t, (fig 2).

 I_0 est l'intensité du courant à l'instant t = 0.

Déterminer la constante de temps τ et en déduire la valeur de la capacité C du condensateur.

