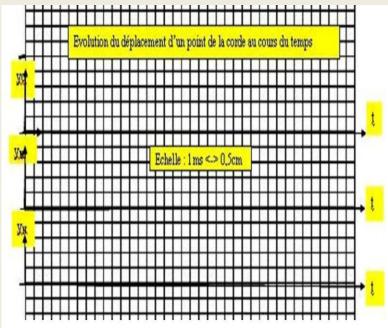
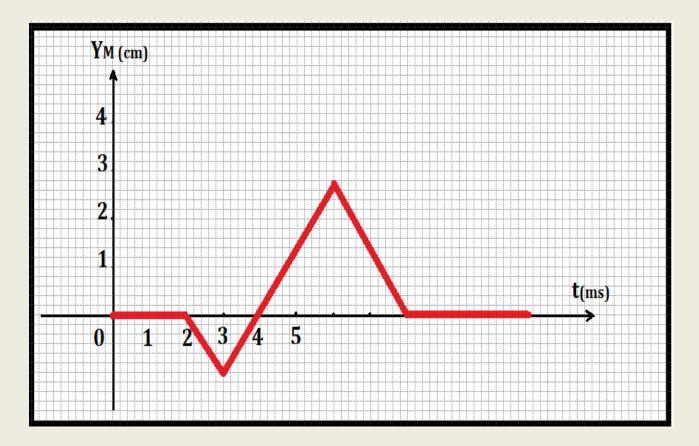

Série 4 : Les ondes mécaniques progressives



EXERCICE 1:

On considère un signal transversal de forme triangulaire (voir le premier schéma sur la feuille de réponse) se propageant le long d'une corde tendue, supposée de longueur infinie et sans amortissement, à la célérité constante c=10,0m. s^{-1} . À la date t=0, le début de la perturbation de la corde commence au point S (point source). Le premier dessin représente la corde à l'instant t=5,0ms. Échelle : 1 carreau représente 5mm


- 1- Représenter l'aspect de la corde aux dates suivantes :0.0ms ; 1,0ms ; 2,0ms ; 3,0ms ; et 15ms. On complétera la feuille de réponse jointe. Les dessins devront être soignés.
- 2- Représenter les déplacements en fonction du temps :
- a- du point source S . Soit ys(t).
- b- du point M situé à 5cm de S .soit y_M(t).
- c- du point N situé à 15cm de S .soit $y_{\scriptscriptstyle N}(t)$

EXERCICE 2

Une perturbation se propage le long d'une corde tendue. A la date t = 0, l'onde part du point 0, origine de l'axe (0x) de même direction que la corde. Le graphique ci-dessous représente le déplacement transversal $Y_M(t)$. D'un point M, d'abscisse : $x_M = 10,0$ cm.

- 1- A quelle date t_i la perturbation arrive-t-elle en M?
- 2- Calculer la célérité v de l'onde le long de la corde
- 3- Pendant quelle durée Δt le point M est-il affecté par le passage de l'onde?
- 4- Quelle est la longueur L de la perturbation ? On considère un point N d'abscisse 32 cm.
- 5- Calculez le retard en N par rapport au M
- 6- A quelle date t₂ la perturbation arrive-t-elle en N?
- 7- Représenter graphiquement Y_N(t).
- 8- Schématiser la corde à la date t2, c'est à dire à l'instant où la perturbation atteint le point N.

