Série 1 : Les ondes mécaniques progressives

y

V1

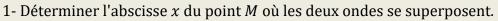
0

y2

EXERCICE 1 (superposition de deux ondes)

Une onde transversale d'ordonnée $y_1 = 10 \text{ mm}$ se propage sur l'axe Ox à la vitesse V_1 .

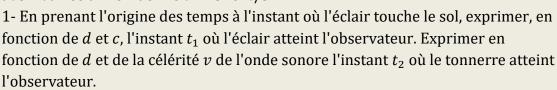
A la date t = 0; elle se trouve au point 0.


Une deuxième onde de même nature;

d'ordonnée $y_2 = -4$ mm se propage à la vitesse V_2 dans le sens opposé suivant la même direction.

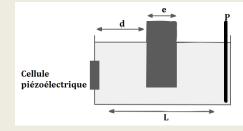
A la date t = 0; elle passe par le point A.

On donne : $V_1 = 30 \text{ cm} \cdot \text{s}^{-1}$; $V_2 = 20 \text{ cm} \cdot \text{s}^{-1}$;


OA = d = 50 cm.

- 2- Calculer l'ordonnée y de l'onde résultante.
- 3-Quelle est la date t_M .

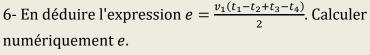
Lors d'un orage, un éclair s'accompagne de l'émission d'une onde sonore (le tonnerre), et d'une onde lumineuse (la foudre). Un observateur est situé à la distance d du point d'impact de l'éclair. Il entend le tonnerre τ secondes après avoir vu l'éclair. On donne v = 340m/s



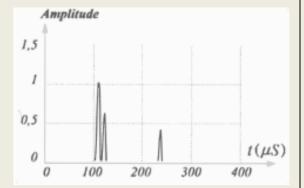
- 2- Exprimer τ en fonction de t_1 et t_2 , et en déduire l'expression $d = \frac{v\tau}{1-v^2}$
- 3- Comparer v et c. Justifier que l'on peut écrire $d \approx v\tau$. Calculer d pour $\tau = 3s$.

EXERCICE 3 : Echographie :

Une cellule piézoélectrique émet et reçoit des impulsions sonores se propageant dans une cuve remplie d'eau. Une plaque P, placée à l'autre extrémité de la cuve, réléchit parfaitement les ondes ultrasonores, dont la célérité est $v = 1540 \text{ m.s}^{-1}$.



- 1-Quelle est la nature physique de la perturbation?
- 2. L'émetteur envoie une impulsion ultrasonore et reçoit un écho après une durée $t_1 = 260 \mu s$. Exprimer la largeur L de la cuve en fonction de v_1 et t_1 .
- 3- On place dans la cuve un bloc parallélépipédique d'épaisseur e. La célérité des ondes ultrasonores dans le métal est c_2 . L'émetteur envoie une impulsion à t=0 afin de déterminer l'épaisseur du bloc, puis reçoit trois échos en t_2 , t_3 et t_4 . Sur le graphe on mesure $t_2=104~\mu s$, $t_3=116\mu s$ et $t_4=233~\mu s$


A quoi correspond chacun de ces trois échos?

5 -Exprimer t_3 en fonction de t_2 , v_2 et e, puis t_4 en fonction de

7-Calculer la valeur de la célérité v_2 .

