Série 1 : Transformations rapides et transformations lentes

EXERCICE 1

On réalise l'oxydation des ions iodures $I_{(aq)}$ par les ions peroxodisulfate $S_2 O_8^{2-}$ (aq). Cette réaction, lente et totale, met en jeu les couples ox / red suivants : $I_{2(aq)}$ / $I_{(aq)}$ et $S_2 O_8^{2-}$ (aq) / SO_4^{2-} (aq)

- 1. Établir l'équation bilan de la réaction chimique
- **2**. Afin d'étudier les facteurs cinétiques influant sur la durée de cette réaction, on réalise les 3 expériences suivantes :

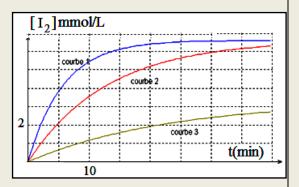
Expériences	$[I^{-}]_{0}$ (en mol .L ⁻¹)	$[S_2 O_8^{2-}]$ (en mol .L ⁻¹)	Température (en °C)
1	2,0 .10-2	1,0 .10-2	20
2	4,0 .10-2	2,0 .10-2	20
3	4,0 .10-2	2,0 .10-2	35

- 3. Sans justifier, répondre par Vrai ou Faux aux affirmations suivantes :
- 3. 1- C'est dans l'expérience 2 que la vitesse de réaction est la plus faible
- 3. 2- Par comparaison entre les expériences 1 et 3, on étudie l'influence de la température
- 3. 3- C'est dans l'expérience 3 que la vitesse de réaction est la plus grande
- **3. 4-** Les ions iodure sont toujours en excès
- **3. 5-** La quantité finale de diode formée dans l'expérience 2 est le double de celle formée dans l'expérience 1

EXERCICE 2

L'acide formique (HCOOH) se décompose en dioxyde de carbone (CO_2) et en eau (H_2O) selon la réaction suivante : $HCOOH \rightarrow CO_2 + H_2O$

Supposez qu'à t=0, la concentration initiale de l'acide formique soit $[HCOOH]_0 = 1,0 \ mol/L$. Lors d'une expérience, on a mesuré les concentrations de HCOOH à différents instants pour deux températures différentes. Les résultats sont les suivants :


Temps (s)	[HCOOH] à 25°C (mol/L)	[HCOOH] à 50°C (mol/L)
0	1,0	1,0
10	0,9	0,8
20	0,81	0,64
30	0,73	0,52

- 1. À partir des données fournies, déterminez laquelle des réactions, à 25°C ou à 50°C, est la plus rapide.
- 2. Pour chaque température Comment cette vitesse évolue-t-elle au cours du temps?
- 3. Représentez graphiquement la concentration de HCOOH en fonction du temps pour les deux températures.
- 4. À partir du graphique, comment pouvez-vous dire si une transformation est rapide ou lente?
- 5. Expliquez comment la température influence la vitesse de la réaction de décomposition de l'acide formique.
- 6. Imaginez une situation industrielle où il serait préférable de réaliser cette réaction à une vitesse lente plutôt qu'à une vitesse rapide. Justifiez votre réponse.

EXERCICE 3:

On réalise successivement les trois mélanges ci-dessous (pour chacun des trois mélanges, l'eau oxygéné est introduite à l'instant t=0 s); dans les trois mélanges, l'acide sulfurique est en large excès.

	Mélange A	Mélange B	Mélange C
Acide sulfurique 1 mol/L	10 mL	10 mL	10 mL
Solution iodure 0,1 mol/L	18 mL	10 mL	10 mL
Eau oxygénée 0,1 mol/L	2 mL	2 mL	1 mL
Eau distillée	0 mL	8 mL	9 mL

Le document ci-dessus donne les concentrations en diiode formé en fonction du temps.

- 1- Ecrire l'équation de la réaction étudiée. On donne : $I_{2(aq)}/I_{(aq)}$ et $H_2O_{2(aq)}/H_2O_{(l)}$
- 2- Calculer, la concentration molaire de l'eau oxygénée et des ions iodure, pour chaque mélange.
- 3- Attribuer à chaque courbe numérotée le mélange correspondant A, B ou C en justifiant.
- 4- Préciser (en justifiant) dans chaque cas le réactif limitant en déduire pour chaque mélange, les concentrations finales en diiode lorsque la réaction est terminée.
- 5- A t= 30 min, les réactions sont-elles terminées dans les trois cas? Justifiez la réponse