
Transformations rapides et transformations lentes

1. Réactions d'oxydoréduction (Rappel):

- 1.1. Activité 1 : Action des ions argent (Ag+) sur une lame de cuivre (Cu) :
- On immerge partiellement une lame (ou un fil) de cuivre dans un bécher (ou un tube à essais) contenant une solution de nitrate d'argent (Ag^+ , NO_3^-).

- Après quelques minutes, on observe un dépôt brillant sur la partie immergée de la lame et après une longue durée, la solution initialement incolore devient bleue.
- 1. Interpréter ces observations ;
- 2. Préciser l'espèce chimique qui joue le rôle de **réducteur** et l'espèce chimique qui joue le rôle **d'oxydant** et en déduire les **couples oxydant / réducteur** intervenant dans cette réaction chimique
- 3. Écrire l'équation bilan de la réaction ayant lieu entre le cuivre et les ions d'argent.

Correction:

- 1. La coloration bleue de la solution indique la formation des ions de $Cu_{(aq)}^{2+}$. Alors le cuivre Cu (s) se transforme à l'ion $Cu_{(aq)}^{2+}$ en libérant 2 électrons selon la demi-équation $Cu_{(aq)}^{2+} + 2e^- \rightleftharpoons Cu(s)$. Le dépôt qui se forme sur la partie immergée de la lame de cuivre est de l'argent métallique constitué d'atomes d'argent Ag(s). Alors l'ion Ag+(aq) se transforme au métal Ag(s) en captant un électron selon la demi-équation suivante $Ag_{(aq)}^+ + e^- \rightleftharpoons Ag_{(s)}$
- 2. l'espèce chimique qui joue le rôle de réducteur est le cuivre Cu (s) , puisque il a perdu deux électrons
 - et il est oxydé en son oxydant conjugué $Cu_{(aq)}^{2+}$. Ces deux espèce chimiques forment un couple Ox /red : $Cu_{(aq)}^{2+}$ / Cu(s). Dans ce cas , le cuivre Cu(s) a subi une oxydation.
 - l'espèce chimique qui joue le rôle d'oxydant est l'ion Ag+(aq), puisque il a capté (gagné) un électron et il est réduit en son réducteur conjugué Ag(s), Ces deux espèce chimiques forment un couple $Ag^+(aq)/Ag(s)$. Dans ce cas l'ion $Ag^+(aq)$ a subi une réduction. Donc la réduction est un gain d'électrons
- 3. l'équation bilan de la réaction d'oxydoréduction est obtenue en ajoutant membre à membre les deux

demi-réactions de manière à éliminer les électrons

1^{er} couple : $Ag_{(aq)}^+/Ag_{(s)}$	$(Ag_{(aq)}^+ + e^- \rightleftharpoons Ag_{(s)}) \times 2$
2^{eme} couple: $Cu_{(aq)}^{2+}/Cu_{(s)}$	$Cu_{(s)} \rightleftharpoons Cu_{(aq)}^{2+} + 2e^{-}$
Equation bilan	$2Ag_{(aq)}^+ + Cu_{(s)} \rightleftharpoons 2Ag_{(s)}^- + Cu_{(aq)}^{2+}$

1.2. Conclusion:

- ✓ **L'oxydant (Ox)** : est une espèce chimique capable de capter (gagner) un ou plusieurs électrons au cours d'une réaction chimique ; il subit une réduction.
- ✓ **Le réducteur (Red)** : est une espèce chimique capable de céder (perdre) un ou plusieurs électrons au cours d'une réaction chimique, il subit une oxydation.
- ✓ L'oxydation : est une perte d'électrons
- ✓ La réduction : est un gain d'électrons
- ✓ **Le couple Oxydant / Réducteur** ou couple redox, noté Ox/Red, est constitué d'un oxydant et son réducteur, ils sont liés par la demi-équation d'oxydoréduction suivante : $Ox + ne^- \leftrightarrow red$

✓ La réaction d'oxydo-réduction est une réaction au cours de laquelle s'effectue un transfert d'électrons entre deux espèces chimiques (l'oxydant d'un couple et le réducteur d'un autre couple)

Remarque:

Une équation de réaction doit toujours respecter les lois de conservation (Lois de conservation) :

- ✓ la conservation de l'élement chimique.
- ✓ la conservation de la quantité de matière,
- ✓ la conservation de la charge éléctrique.

Application:

- 1. Écrire l'équation de la réaction d'oxydoréduction entre les ions ferreux Fe²⁺ et les ions permanganates MnO_4^- en milieu acide.
- 2. Écrire l'équation de la réaction d'oxydoréduction qui traduit la transformation entre les ions de fer II et les ions dichromate $Cr_2O_7^{2-}$ en milieu acide.
 - **Données**: les couples Oxydant /Réducteur mis en jeu : MnO_4^- / Mn^{2+} ; Fe^{3+} / Fe^{2+} et $Cr_2O_7^{2-}$ / Cr3+

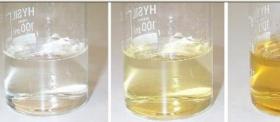
2. Transformations lentes et transformations rapides

- 2.1. Transformations rapides
 - Activité (Mise en évidence expérimentale d'une transformation
- Verser 20 ml de la solution de sulfate de cuivre II ($Cu^{2+}_{(aq)} + SO_4^{2-}_{(aq)}$) dans un tube à essai
- Ajouter 10 ml de la soude (Na+(aq) + HO-(aq))
- 1. Qu'observez-vous ? Quel est le nom du composé produit ?
- 2. Écrire l'équation de cette réaction
- 3. Cette réaction peut-elle être suivie à l'œil nu ? Conclure.

Correction

- 1. On observe la formation d'un précipité bleu. c'est l'hydroxyde de cuivre II
- 2. L'équation de la réaction est : $Cu^{2+}(aq) + 2 HO^{-}(aq) \rightarrow Cu(HO)_{2(s)}$
- 3. Cette réaction ne peut pas être suivie à l'œil nu ; alors c'est une réaction rapide

Conclusion


Les transformations rapides (instantanées) : sont des transformations qui se produisent rapidement, de sorte que nous ne pouvons pas suivre leur évolution dans le temps à l'œil nu ou avec les appareils de mesure courants disponibles en laboratoire, c'est à dire qu'il est impossible de distinguer des états intermédiaires entre l'état initial et l'état final du système chimique.

2.2. Transformations lentes

a) Activité:

Le peroxyde d'oxygène H2O2(aq) ou eau oxygénée, en solution aqueuse acide réagit avec les ions iodure I-.

- Mélanger dans un bécher 20 mL d'eau oxygénée H₂O₂ de concentration molaire 0,2 mol.L⁻¹ et 2 mL d'acide sulfurique (2H+ SO_4^{2-}).
- À un instant choisi comme origine des dates, ajouter 20 ml d'une solution d'iodure de potassium de concentration molaire c = 10-2 mol.L-1

Données: Couples mis en jeu: $H_2O_2(aq) / H_2O(l)$ et $I_2(aq) / I^-(aq)$

- 1. Qu'observez-vous ? Comment évolue la couleur du mélange lorsque la transformation se déroule ?
- 2. Cette transformation observée peut-elle être qualifiée de lente ou de rapide?
- 3. Écrire l'équation bilan de cette réaction.

Correction:

- 1. On observe que la couleur du mélange réactionnel évolue progressivement du jaune au jaune foncé puis prend une coloration brune qui devient de plus en plus foncée en fonction du temps.
- 2. On peut qualifier cette transformation de lente car on peut suivre l'évolution de cette transformation à l'œil nu.
- 3. L'équation bilan de cette réaction chimique

Les demi-équations électroniques relatives aux couples : $H_2O_{2(aq)}/H_2O_{(l)}$ et $I_{2(aq)}/I^-$ (aq)

- Pour le premier couple : $H_2O_{2(aq)} / H_2O_{(l)}$: $H_2O_{2(aq)} + 2H + (aq) + 2e \rightarrow 2H_2O_{(l)}$
- Pour le deuxième couple : $I_{2(aq)}/I^{-}(aq)$: $2I^{-}(aq) \leftrightarrow I_{2(aq)} + 2e$

L'équation bilan de la réaction chimique : $H_2O_{2(aq)} + 2I^{-}(aq) + 2H + (aq) \rightarrow 2H_2O(l) + I_{2(aq)}$

b) Conclusion

Les transformations lentes : sont des transformations qui se produisent lentement, elles durent de quelques secondes à plusieurs heures, de sorte que leur évolution dans le temps peut être suivie à l'oeil nu ou avec les appareils de mesure courants disponibles en laboratoire.

3. Facteurs cinétiques

3.1. Définition

- ✓ L'évolution temporelle des systèmes chimiques dépend de la nature des réactifs mis en présence. Mais aussi des conditions expérimentales
- ✓ Selon les conditions expérimentales une réaction lente peut devenir rapide et vice-versa. Les paramètres qui influent sur la vitesse d'évolution d'un système chimique sont appelés facteurs cinétiques.
- ✓ Un facteur cinétique est une grandeur capable de modifier la vitesse d'une réaction chimique
- ✓ Les facteurs cinétiques sont : la température, la lumière, la concentration initiale des réactifs, l'emploi d'un catalyseur.

3.2. Influence de la température

a) Activité : (La température est un facteur cinétique)

- Verser dans deux tubes à essais A et B, 10,0 ml d'une solution d'acide oxalique H₂C₂O_{4(aq)} à 0,50 mol.L⁻¹.
- Plonger le tube à essais A dans un bain-marie à 20°C, et le tube a essais B dans un bain marie à 60°C.
- À un instant choisi comme origine des dates, ajouter en même temps 3ml

dates, ajouter en même temps 3ml d'une solution **acidifiée** de permanganate de potassium $(K^+ + MnO_4^-)$ à 0,50 mol.L-1 dans chacun des tubes à essais (voir la figure ci-dessous)

- Les ions permanganates MnO_4^- (aq) sont violets en solution aqueuse, la solution d'acide oxalique est incolore ainsi que celle d'acide sulfurique qui sert à acidifier le mélange réactionnel. Les ions manganèse II (Mn²⁺(aq)) sont incolores en solution aqueuse.
- **1.** Écrire l'équation bilan de la réaction sachant que les couples mis en jeu : MnO_4^- (aq) / Mn^{2+} (aq) et $CO_{2(g)}$ / $H_2C_2O_{4(aq)}$
- 2. Cette réaction est-elle une réaction d'oxydoréduction? Justifier.
- **3**. Qu'observez-vous ? Comparer les durées de décoloration (la disparition de la couleur) de chaque mélange.
- 4. Que peut-on en déduire?
- 5. Interpréter ces résultats au niveau microscopique

Correction:

1. L'équation bilan de la réaction chimique

1^{er} couple : $CO_{2(g)} / H_2C_2O_4$	$5* \qquad (H_2C_2O_{4(aq)} \rightleftharpoons 2CO_{2(g)} + 2H_{(aq)}^+ + 2e)$
2 ^{eme} couple:	$2* (MnO_{4(aq)}^{-} + 5e^{-} + 8H_{(aq)}^{+} \rightleftharpoons Mn_{(aq)}^{2+} + 4H_{2}O_{(l)})$
$MnO_{4(aq)}^{-}/Mn_{(aq)}^{2+}$	
L'équation bilan	$2 MnO_{4(aq)}^{-} + 5 H_2C_2O_{4(aq)} + 16H_{(aq)}^{+} \rightleftharpoons 2 Mn_{(aq)}^{2+} + 8H_2O_{(l)} + 10 CO_{2(g)}$

- 2. Cette réaction est une réaction d'oxydoréduction car il y a un transfert d'électrons entre les deux réactifs (l'oxydant $MnO_{4(aq)}^{-}$ et le réducteur $H_2C_2O_{4(aq)}$
- 3. On observe que la disparition de la couleur violette (la décoloration) est plus rapide dans le tube à essais B à 60° C
- 4. On constate que La vitesse de disparition des ions $MnO_{4(aq)}^{-}$ est plus grande quand la température est plus élevée .Donc la température est un facteur cinétique : Plus la température d'un mélange réactionnel est grande, plus la réaction est rapide.
- 5. La température est une grandeur liée à l'agitation moléculaire. Autrement dit plus la température est élevée, plus les réactifs sont agités. il est donc logique que le nombre de chocs efficaces par unité de temps (par seconde) soit plus grande et que La vitesse de la réaction soit plus rapide.

b) Conclusion

- ✓ La température est un facteur cinétique
- ✓ La vitesse d'évolution d'un système chimique est d'autant plus grande que sa température est plus élevée
 - 3.3. Influence de la concentration des réactifs
 - a) Activité : (La concentration est-elle un facteur cinétique)

Nous avons vu au paragraphe précédent qu'en milieu acide, les ions permanganate réagissent lentement avec l'acide oxalique. L'équation de cette réaction s'écrit :

$$2 MnO_{4(aq)}^{-} + 5 H_2C_2O_{4(aq)} + 6 H_{(aq)}^{+} \rightarrow 2 Mn^{2+}_{(aq)} + 10 CO_{2(g)} + 8 H_2O_{(l)}$$

- Préparer trois tubes à essais A,B et C, chacun avec 10,0 ml de solution d'acide oxalique, mais à des concentrations différentes : 0,50 mol.L-1, 0,25 mol.L-1 et 0,10 mol.L-1.
- A un instant choisi comme origine des dates, ajouter rapidement 3ml d'une solution acidifiée de permanganate de potassium (0,50 mol.L-1) dans chaque tube.
- Noter le temps nécessaire pour que la couleur violette du permanganate disparaisse dans chaque tube.Les résultats obtenus sont regroupés dans le tableau ci-dessous :

tube	[MnO -]i (mol.L-1)	[H ₂ C ₂ O ₄]i (mol.L ⁻ 1)	t _{d(s)}
A	0.5	0.5	25
В	0.5	0.25	50
С	0.5	0.1	100

- 1. Quelle est l'espèce chimique responsable de la couleur du mélange réactionnel?
- **2**. Quel est le réactif dont l'influence de la concentration est étudiée dans cette série d'expériences ? Iustifier
- 3. Qu'observe-t-on?
- 4. Que peut-on en déduire?
- 5. Interpréter ces résultats au niveau microscopique.

Correction

1. l'espèce chimique responsable de la couleur du mélange réactionnel est l'ion de permanganate $Mn0_{4}$

- **2.** les mélanges utilisés ont les mêmes concentrations initiales en ions permanganate *MnO* $_{4}^{-}$, en revanche, leurs concentrations initiales en acide oxalique [H₂C₂O₄]_i sont différentes: Donc Cette série d'expériences permet d'étudier l'influence de la concentration initiale en acide oxalique [H₂C₂O₄]_i sur la vitesse de la réaction chimique
- 3. On observe que la durée td de disparition de la teinte violette est plus faible lorsque [H2C2O4]i est plus grande
- **4.** On constate que la concentration des réactifs est un facteur cinétique : plus la concentration initiale des réactifs est grande, plus la réaction chimique est rapide.
- **5**. Plus la concentration des réactifs est grande, plus le nombre de réactifs par unité de volume est grande et que la vitesse de la réaction soit plus grande .

b) Conclusion:

- ✓ La concentration initiale des réactifs est un facteur cinétique
- ✓ La vitesse d'évolution d'un système chimique est d'autant plus grande que les concentrations initiales sont plus importantes

4. Quelques applications des facteurs cinétiques

On peut ralentir ou accélérer une transformation chimique en agissant sur les facteurs cinétiques.

4.1. Accélération ou déclenchement d'une réaction chimique

On accélère ou on déclenche des transformations en augmentant la température du milieu réactionnel **Exemples** : utilisation d'un autocuiseur (une cocotte-minute) pour cuire des aliments

4.2. Ralentissement ou arrêt d'une réaction chimique

On ralentit ou on bloque des transformations, en diminuant la température ou en diluant le mélange réactionnel

Exemples : Conservation des aliments dans un réfrigérateur